The generator matrix

 1  0  0  1  1  1  X  1 X^2+X  1  1  1 X^2 X^2+X X^2+X  0  1  1  X  0  1  1  0  1  1 X^2  1  X  1  1  1  X  1 X^2+X  1  1  1  1 X^2+X X^2  1 X^2  1  1  1 X^2 X^2  1  1  1 X^2+X  1  1  X  X X^2  1  1  1 X^2+X  0  0  X  0  1  X  X  X X^2  1  X  1 X^2+X  1  1  1 X^2+X  1  X  1  1  1
 0  1  0  1 X^2 X^2+1  1  1 X^2+X X^2+1  0 X^2  1  1  0  X  X X+1  1  1 X+1  X  1 X^2+X X^2  1 X+1  1  X X^2+1 X^2+X+1  1  0  1 X^2+X+1 X^2+X X^2+X+1  1  X  1 X^2+1  0 X^2+X X^2+X+1  X  1 X^2+X  1 X^2+1 X^2+X  1  0 X^2 X^2  1  1 X+1 X^2+X+1  0  1 X^2  1  X X^2+X  X X^2+X  1  0 X^2  0  1 X^2+X X^2  1  1 X+1  1 X+1  1 X^2+X+1  0  1
 0  0  1 X^2  1 X^2+1 X^2+1 X^2+X  1 X+1  X X^2+X+1  X X+1  1  1  0 X^2  0 X+1 X+1  1  1  X X^2+1 X^2+X  1 X^2+X X^2+X+1  1 X^2+X  1 X^2+X  X X+1 X^2+X+1  X X+1  1 X^2+1  X  1 X^2+1 X^2+1 X^2+X X+1  1 X^2+X+1 X^2  0  0 X+1  0  1 X^2+X+1  0 X^2+1 X^2+X+1 X^2+1  1  1 X^2+X+1  1  1 X+1  1 X+1  1  1 X^2+X+1 X^2 X^2  1  1 X^2+1  X X^2+1 X^2+X+1  X  1  1  1

generates a code of length 82 over Z2[X]/(X^3) who�s minimum homogenous weight is 79.

Homogenous weight enumerator: w(x)=1x^0+54x^79+86x^80+100x^81+98x^82+52x^83+44x^84+36x^85+19x^86+6x^87+3x^88+2x^90+8x^91+1x^92+1x^100+1x^110

The gray image is a linear code over GF(2) with n=328, k=9 and d=158.
This code was found by Heurico 1.11 in 0.141 seconds.